Artificial neural networks for non destructive testing of concrete structures

نویسندگان

  • Barbara Cannas
  • Sara Carcangiu
  • Francesca Cau
  • Alessandra Fanni
  • Augusto Montisci
  • Pietro Testoni
چکیده

In this paper, the determination of defects in concrete structures using an ultrasound technique is discussed. A diagnostic model for concrete pillars by means of Multi Layer Perceptron neural networks is developed to locate and classify the defects. Finite Elements numerical techniques have been used to model a concrete pillar of specified size (i.e., rectangular cross section and 2 meters in span) affected by defects of different position and size. The numerical analyses enable to obtain several received signals containing the fault information. These signals have been processed by a feature extractor system, whose purpose is to reduce the data dimensionality and to compute suitable features. Results showed good accuracy in the identification of the position and entity of the faults.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

Improving Non - Destructive Test Results Using Artificial Neural Networks

In the construction industry, non-destructive testing (NDT) methods are gaining more popularity for their ability to examine the in-situ component properties without damaging the structure. One of the most common NDTs for measuring the concrete compressive strength on site is the Rebound Hammer Test. Using the rebound value obtained from the test hammer, the concrete compressive strength can be...

متن کامل

Steel Bars Identification in Reinforced Concrete Structures by Using ANN And Magnetic Fields

This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, ...

متن کامل

Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks

Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007